Mechanics Key Stage 5 Maths Curriculum

Autumn 1		
Applied Maths Chapter 8: Modelling in mechanics	Applied Maths Chapter 9: Constant acceleration	
Assessment: Ch 8 Modelling in mechanics	Assessment: Ch 9 Constant acceleration	
 Builds Upon (GCSE (9-1) in Mathematics at Higher Tier): Change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices, density, pressure) in numerical and algebraic contexts Use compound units such as speed, rates of pay, unit pricing, density and pressure Plot and interpret graphs (including reciprocal graphs and exponential graphs) and graphs of non-standard functions in real contexts to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration Calculate or estimate gradients of graphs and area under graphs (including quadratic and non-linear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs and graphs in financial context 	 Builds Upon (GCSE (9-1) in Mathematics at Higher Tier): Change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices, density, pressure) in numerical and algebraic contexts Use compound units such as speed, rates of pay, unit pricing, density and pressure Substitute numerical values into formulae and expressions, including scientific formulae A5 Understand and use standard mathematical formulae; rearrange formulae to change the subject Plot and interpret graphs (including reciprocal graphs and exponential graphs) and graphs of non-standard functions in real contexts to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration Calculate or estimate gradients of graphs and area under graphs (including quadratic and non-linear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts Solve linear equations in one unknown algebraically (including those with the unknown on both sides of the equation) Solve quadratic equations (including those that require rearrangement) algebraically by factorising, by completing the square and by using the quadratic formula 	

Introduces:

- Understand the concept of a mathematical model, and be able to abstract from a real-world situation to a mathematical description (model);
- know the language used to describe simplifying assumptions;
- understand the particle model;
- be familiar with the basic terminology for mechanics;
- be familiar with commonly-made assumptions when using these models;
- be able to analyse the model appropriately, and interpret and communicate the implications of the analysis in terms of the situation being modelled;
- understand and use fundamental quantities and units in the S.I. system: length, time and mass;
- Understand that units behave in the same way as algebraic quantities, e.g. meters per second is
- m/s=m×1/s=ms-1

Introduces:

- Understand and interpret displacement-time graphs
- Understand and interpret velocity-time graphs
- Derive the constant acceleration formulae and use them to solve problems
- Derive the constant acceleration formulae and use them to solve problems
- Use the constant acceleration formulae to solve problems involving vertical motion under gravity

Autumn 2	
Applied Maths Chapter 9: Constant acceleration (Continuing)	Applied Maths Chapter 10: Forces and Motion
Assessment: Ch 9 Constant acceleration	Assessment: Ch 10 Force and motion
 Builds Upon (GCSE (9-1) in Mathematics at Higher Tier): Change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices, density, pressure) in numerical and algebraic contexts Use compound units such as speed, rates of pay, unit pricing, density and pressure Substitute numerical values into formulae and expressions, including scientific formulae A5 Understand and use standard mathematical formulae; rearrange formulae to change the subject Plot and interpret graphs (including reciprocal graphs and exponential graphs) and graphs of non-standard functions in real contexts to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration Calculate or estimate gradients of graphs and area under graphs (including quadratic and non-linear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts Solve linear equations in one unknown algebraically (including those with the unknown on both sides of the equation) Solve quadratic equations (including those that require rearrangement) algebraically by factorising, by completing the square and by using the quadratic formula 	 Builds Upon (GCSE (9-1) in Mathematics at Higher Tier): Solve two simultaneous equations in two variables (linear/linear or linear/quadratic) algebraically; find approximate solutions using a graph Builds Upon (Year 1 Applied chapter 8): Modelling and definitions/assumptions from the introduction
Introduces:	Introduces:
 Understand and interpret displacement-time graphs Understand and interpret velocity-time graphs Derive the constant acceleration formulae and use them to solve problems 	 Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's Second law F=ma Apple Newton's second law to vector forces and acceleration

 Derive the constant acceleration formulae and use them to solve problems Use the constant acceleration formulae to solve problems involving vertical motion under gravity 	 Understand and use Newton's third law Solve problems involving connected particles
--	---

Spring 1		
Applied Maths Chapter 10: Forces and Motion (Continuing)		
Assessment: Ch 10 Force and motion		
Builds Upon (GCSE (9-1) in Mathematics at Higher Tier):		
• Solve two simultaneous equations in two variables (linear/linear or linear/quadratic) algebraically; find approximate solutions using a graph		
Builds Upon (Year 1 Applied chapter 8):		
Modelling and definitions/assumptions from the introduction		
Introduces:		
Introduces:		
Draw force diagrams and calculate resultant forces		
Understand and use Newton's first law		
Calculate resultant forces by adding vectors		
 Understand and use Newton's Second law F=ma 		
Apple Newton's second law to vector forces and acceleration		
Understand and use Newton's third law		
Solve problems involving connected particles		
Spring 2		
Applied Maths Chapter 11: Variable acceleration		
Assessment: Ch 11 Variable Accelerations		

Builds Upon (GCSE (9-1) in Mathematics at Higher Tier):

- Identify and interpret roots, intercepts, turning points of quadratic functions graphically; deduce roots algebraically and turning points by completing the square
- Plot and interpret graphs (including reciprocal graphs and exponential graphs) and graphs of non-standard functions in real contexts to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration
- Calculate or estimate gradients of graphs and area under graphs (including quadratic and non-linear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts

Introduces:

• Understand that displacement, velocity and acceleration may be given as functions of time

- Use differentiation to solve kinematics problems
- Use calculus to solve problems involving maxima and minima
- Use integration to solve kinematics problems
- Use calculus to derive constant acceleration formulae