Mechanics Key Stage 5 Maths Curriculum

Autumn 1	
Applied Maths Chapter 8: Modelling in mechanics	Applied Maths Chapter 9: Constant acceleration
Assessment: Ch 8 Modelling in mechanics	Assessment: Ch 9 Constant acceleration
Builds Upon (GCSE (9-1) in Mathematics at Higher Tier): - Change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices, density, pressure) in numerical and algebraic contexts - Use compound units such as speed, rates of pay, unit pricing, density and pressure - Plot and interpret graphs (including reciprocal graphs and exponential graphs) and graphs of non-standard functions in real contexts to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration - Calculate or estimate gradients of graphs and area under graphs (including quadratic and non-linear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs and graphs in financial context	Builds Upon (GCSE (9-1) in Mathematics at Higher Tier): - Change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices, density, pressure) in numerical and algebraic contexts - Use compound units such as speed, rates of pay, unit pricing, density and pressure - Substitute numerical values into formulae and expressions, including scientific formulae - A5 Understand and use standard mathematical formulae; rearrange formulae to change the subject - Plot and interpret graphs (including reciprocal graphs and exponential graphs) and graphs of non-standard functions in real contexts to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration - Calculate or estimate gradients of graphs and area under graphs (including quadratic and non-linear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts - Solve linear equations in one unknown algebraically (including those with the unknown on both sides of the equation) - Solve quadratic equations (including those that require rearrangement) algebraically by factorising, by completing the square and by using the quadratic formula

Introduces:

- Understand the concept of a mathematical model, and be able to abstract from a real-world situation to a mathematical description (model);
- know the language used to describe simplifying assumptions;
- understand the particle model
- be familiar with the basic terminology for mechanics;
- be familiar with commonly-made assumptions when using these models;
- be able to analyse the model appropriately, and interpret and communicate the implications of the analysis in terms of the situation being modelled;
- understand and use fundamental quantities and units in the S.I system: length, time and mass;
- Understand that units behave in the same way as algebraic quantities, e.g. meters per second is
- $\mathrm{m} / \mathrm{s}=\mathrm{m} \times 1 / \mathrm{s}=\mathrm{ms}-1$
ntroduces:
- Understand and interpret displacement-time graphs
- Understand and interpret velocity-time graphs
- Derive the constant acceleration formulae and use them to solve problems
- Derive the constant acceleration formulae and use them to solve problems
- Use the constant acceleration formulae to solve problems involving vertical motion under gravity

Autumn 2	
Applied Maths Chapter 9: Constant acceleration (Continuing...)	Applied Maths Chapter 10: Forces and Motion
Assessment: Ch 9 Constant acceleration	Assessment: Ch 10 Force and motion
Builds Upon (GCSE (9-1) in Mathematics at Higher Tier): - Change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices, density, pressure) in numerical and algebraic contexts - Use compound units such as speed, rates of pay, unit pricing, density and pressure - Substitute numerical values into formulae and expressions, including scientific formulae - A5 Understand and use standard mathematical formulae; rearrange formulae to change the subject - Plot and interpret graphs (including reciprocal graphs and exponential graphs) and graphs of non-standard functions in real contexts to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration - Calculate or estimate gradients of graphs and area under graphs (including quadratic and non-linear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts - Solve linear equations in one unknown algebraically (including those with the unknown on both sides of the equation) - Solve quadratic equations (including those that require rearrangement) algebraically by factorising, by completing the square and by using the quadratic formula	Builds Upon (GCSE (9-1) in Mathematics at Higher Tier): - Solve two simultaneous equations in two variables (linear/linear or linear/quadratic) algebraically; find approximate solutions using a graph Builds Upon (Year 1 Applied chapter 8): - Modelling and definitions/assumptions from the introduction
Introduces: - Understand and interpret displacement-time graphs - Understand and interpret velocity-time graphs - Derive the constant acceleration formulae and use them to solve problems	Introduces: - Draw force diagrams and calculate resultant forces - Understand and use Newton's first law - Calculate resultant forces by adding vectors - Understand and use Newton's Second law F=ma - Apple Newton's second law to vector forces and acceleration

- Derive the constant acceleration formulae and use them to solve problems
- Use the constant acceleration formulae to solve problems involving vertical motion under gravity
- Understand and use Newton's third law
- Solve problems involving connected particles

Spring 1

Applied Maths Chapter 10: Forces and Motion (Continuing...)

Assessment: Ch 10 Force and motion

Builds Upon (GCSE (9-1) in Mathematics at Higher Tier):

- Solve two simultaneous equations in two variables (linear/linear or linear/quadratic) algebraically; find approximate solutions using a graph

Builds Upon (Year 1 Applied chapter 8):

- Modelling and definitions/assumptions from the introduction

Introduces:

- Introduces
- Draw force diagrams and calculate resultant forces
- Understand and use Newton's first law
- Calculate resultant forces by adding vectors
- Understand and use Newton's Second law F=ma
- Apple Newton's second law to vector forces and acceleration
- Understand and use Newton's third law
- Solve problems involving connected particles

Spring 2

Applied Maths Chapter 11: Variable acceleration

Assessment: Ch 11 Variable Accelerations

Builds Upon (GCSE (9-1) in Mathematics at Higher Tier):

- Identify and interpret roots, intercepts, turning points of quadratic functions graphically; deduce roots algebraically and turning points by completing the square
- Plot and interpret graphs (including reciprocal graphs and exponential graphs) and graphs of non-standard functions in real contexts to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration
- Calculate or estimate gradients of graphs and area under graphs (including quadratic and non-linear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts

Introduces:

- Understand that displacement, velocity and acceleration may be given as functions of time
- Use differentiation to solve kinematics problems
- Use calculus to solve problems involving maxima and minima
- Use integration to solve kinematics problems
- Use calculus to derive constant acceleration formulae

